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Formal asymptotic expansions of the solution of the stationary 
problem of the thermocapillary flow of fluid in an unbounded region, 
with the free boundary unevenly heated, are constructed for large 
values of the Marangoni number. A non-linear boundary layer is formed 
near the free surface, and selfmodelling solutions are found for this 
layer near the critical point. A slow flow outside the boundary layer 
satisfies the equations of an ideal fluid. An equation describing the 
free boundaxy is obtained. When the temperature gradient vanishes, 
this equation becomes the well-known equation of the equilibrium of the 
free boundary of a capillary fluid. Numerical computations are carried 
out to determine the form of the meniscus at the vertical solid wall, 
the free boundary of the fluid poured onto a horizontal surface for the 
plane and axisymmetric case, and the surface of a gas bubble adjacent 
to the wall in a heated fluid. 

The non-linear equations of the stationary boundary Marangoni layer near the free 
boundary of a fluid unevenly heated because of the thermocapillaryeffect were formulated in 
/l/ and studied earlier /2-61. Asymptotic expansions of the solution of the stationary 
Problem of a low-viscosity fluid flow under the action of tangential stresses were 
constructed in /7/. 

1. Consider the stationary problem of the flow of an incompressible fluid in an 
unbounded region D under the action of thermocapillary forces caused by uneven heating of the 
free surface l', for the system of Navier-Stokes equations, with vanishing viscosity Y-+0 

(v.V)v=...-p-'Vp+~Av+g,divv=O 

p = kpn-rr*n -I- a(%, -i-x,)+ P*t 2voll.n - 
2~p (n.ll*n) n = V,O, (2, 9, 2) E r; v-n Ir = 0, V k = 0 

(1.1) 

(1.2 
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Here v = (u,, ny, L';) is the velocity vector, 8 = -ge,, e, is the unit vector of the 
z axis, g is the acceleration due to gravity, n is the unit vector of the outer normal to 
the free boundary, l?,Il is the deformation rate tensor, x1 and x2 are the principal 
curvatures of the surface r, Pr is the given pressure on I', r1 = 'i -(n~X)n is the 
gradient along I', CT is the surface tension, assumed to be a linear function of the tempera- 
ture o = 00 + eT (T- T*) where eo. (JT? T, are known constants, UT < 0 and the tempera- 
ture is specified along I'; I, is the solid boundary. The velocity field vanishes at 
infinity. 

When the viscosity is low, non-linear boundary layers form near the free boundary and 
the solid wall. In an unbounded region the flow, everywhere outside the boundary layer, is 
described approximately by Euler's equations. Below, we construct the formal asymptotic 
expansions of the solution of problem (1.1)‘ (1.2) as Y-+0. The problem reduces to dimen- 
sionless form and a small parameter a =I &f-Y, is introduced in which M = / aT 1 d2Ap-%-" 
isthe Marangoninumber while d and A are the characteristic scales of the length and the 
temperature gradient. We note that when E are small, we have small v or large temperature 
gradients. The dimensionless pressure p' is defined by the relation p = Ppt +po where 
PO = -_p@ is the hydrostatic pressure and p _ e,&J is the scale of the pressure. The 
characteristic velocity u z (~~~A~~~-l~-2~i, within the boundary layer near the free surface 
is taken as the scale of the velocity. The asymptotic expansions of 
(l.l), (1.2) are constructed in the form 

the solution of Problems 

- Ago -+ (1.3) 

Here h is the "capillary constant" /3/ and z = 5 (x7 Y) is the equation of the free 
boundary. Let Dr be the region of the boundary layer near the free surface, and Dt the 
region near the solid wall. Then h,, qk will be functions of the type representing the 
solutions of the problem of the boundary layer in the region .%; wl, r1 in the region DI. , 
and "1, Pl will determine the solution of the problem outside the regions Dr, DL. We note 
that the velocity scale, the orders of principal terms in the expansion (1.31, and the order 
of the thickness of the boundary layer in the region Dr are all found from the condition 
of equality of the orders of the viscous and inertial terms in the Navier-Stokes system, and 
in the boundary conditions (1.2) for tangential stresses. In this case the thickenss of the 
boundary layer in the region Dr is of the order of E. 

2. The boundary value problem for the principal terms of the asynptotic expansion (1.3) 
describing the flow in the boundary layer near the free surface, is obtained by applying to 
system (1.11, (1.2) the second iterative process using the method of Vishik-Lyusternik IS/. 
We introduce the local orthogonal &,cp,B-coordinates near the surface f, using the 
formulas 

x = X (cp, 0) - 6~ Y = Y (cp, 0) - En,, 2 = 2 (cp, e) - En, 

Here x = X (cp,B), y = Y(cp, 0), z = z(cp,e) is the parametric equation of the surface I', 
E is the distance between the point (x,y,z) and the surface I?; n,, nYt n, are the components 
of the vector II. The surfaces cp =: eon&, e = cons form two families of orthogonal surfaces, 
which are chosen so that the lines of their intersection with l? form the lines of principal 
curvatures. We assume that the segments of the normal to F do not intersect at sufficiently 
small E. 

Let &k, heky hEk be the components of the vector hk in local coordinates. We sub- 
stitute (1.3) into (1.1) and (l-2), expand "17Pl in a Taylor series in powers of 5, and 
introduce the stretching transformation E = es. Equating the coefficients of a-l, E" to 
zero, we conclude that ha, = 0, and h,,, heo satisfy the Prandtl boundary layer equations. 

Let us write a boundary value problem for hrp,,,f& for the axisymmetric and the plane 
case 

Here GQ? ge are the Lame coefficients of the surface I'. We note that in the plane 
case ge = 1, and in the axisymmetric case ge = r, where r is the distance from the axis 
of symmetry. If cp is the arc length along p, then glQ = 1. The vector function h, 
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satisfies a linear boundary value problem which is not quoted here. 
We note that problem (2.1) for a plane boundary layer on a segment qpE 10, tl was studied 

for the given initial velocity profile h,,-= f(s) (q = 0) in /6/, where the conditions of 

solvability were found. 
Let us now give the selfsimilar solutions of Problem (2.1) for the axisymmetric case 

near the critical point. We note that the solutions were found in /2/ for the plane case, 
and in /5/ the Mangler transformations for the axisymmetric boundary layers near the free 
surface were obtained. Let the surface tension depend on the coordinate cp in accordance 
with the power law aal@ = a$ where cp is the arc length. Let us put in (2.1) g, = l,gs L-- 
r and assume that r = r,cp. 
aqas, HEI = -r-18 (qya.=p, 

We introduce the stream function II, using the relations ho0 = 
and write ,h = S(p(n-lM. Writing Ip in the form 9 = (P(~+~)ISF~ (q,) 

we construct the following boundary value problem for F,&) (the initial profile need not 
be given, since it is determined by the condition of selfsimilarity): 

3F,"' + (n + 5) F,F,” - (212 + (2.2) 

I) F,” = 0 

F, (0) = F,’ (cm) = 0, F1” (0) = --a 

Integrating Eq.(2.2) on the semi-axis (0, m) we find, 
that a (n + 2)> 0. When n=4, we have the exact 
exponential solution 

F, = I/, (3a)‘la [I - exp (-(3aY’q,)l 

Fig.1 

I Problem (2.2) was integrated numerically for various 
values of n. Fig.1 shows the profiles of the functions F (9) 
(the solid lines) and F'(n) (the dashed lines) where I) =L a"%), 
and F = a-%,. The functions F(n) increase monotonically and 
tend, as 'f-m, to finite limits 0.7124; 0.5341 and 0.4386 
for I(= 1;3; 5 respectively. 

Next we shall determine the principal term of the asmyptotic expansion for the pressure 
in (1.3). Applying the second iterative process /8/ to system (1.1) projected onto the 
normal to the free surface, we obtain an equation for go,, from which it follows that 

90 = - x1 h&ds - xz f h&as 
8 S (2.3) 

Let us find the value of go on the free surface in the plane case. We put x,=0 in 
(2.3), integrate the first equation of (2.1) with respect to s on the semi-axis ro.4 
integrate by parts and integrate the resulting expression with respect to 9. As a result 
we obtain 

Here f. = ho k CPO) is the velocity profile in the boundary layer in the cross-section 
rp = (PO* We note that it is convenient to choose 
Writing 

such that the value of f. 
s=O in (2.3) and taking into account rel?&.on 

is known. 
(2.4) , we obtain 

PO Ir = -x1 [2o (cp) - o (cp,) -t- yl (2.5) 

Similar reduction in the axisymmetric case leads to the relation 

Thus if the velocity profile in the boundary layer is known for some 'po, the pressure 
at the free boundary can be determined to within infinitesimals of the order of 
out having to solve the problem for the boundary layer (2.1). 

U(e), with- 

The functions "1. PI? La determining the flow outside the region of the boundary layer 
and the asymptotic form of the boundary layer are obtained by applying the first iterative 
process /8/ to system (l.l), (1.2). For 
fluid. 

vr, p1 we obtain the Euler equations of an ideal 
Let us denote by I'* the free boundary of an inviscid flow determinedby the equation 

2 = 50. We introduce near PO the local orthogonal coordinates E1, 'ply 4, where fl is 
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the distance from I',. We represent the principal curvatures of the surface 1' in the form 
of series x =SQO+FXll+..., x, X2(, -I- fX 21 T ., where x10. x20 are the principal 
curatures of the surface I',. Substituting the expansions (1.3) into the dynamic condition 
for the normal stress (1.2) and equating to zero the coefficient of PO, we obtain the 
equation of the boundary r,l Taking (2.5) into account, we shall write this equation for 
the plane problem in dimensional form 

x10 120 ((P) - o (ol") -t- VI -1 pgz -i c (X.7) 

Let us write the equation for F0 for the axisymmetric case 

We note that when li. = 0 (a = const), Eqs.(2.7) and (2.8) will determine the free 
equilibrium surface of the capillary fluid in the gravity force field /9/ without heating. 
The inviscid flow outside the boundary layers is determined by solving the boundary value 
problem 

where no is the unit vector of the outer normal to r,,, nr is the vector of the normal to 
the solid wall. 

The vector function w1 determines the velocity field in the boundary layer near the 
solid boundary L, and compensates for the discrepancy arising when the vector v1 satisfies 
the adhesion condition on L. The boundary value problem for WI1 r1 is not given, since 
these functions contribute to the equation of the free surface in the higher-order approxi- 
mations, beginning with the second. 

3. Let us consider the case in which the equation of the free boundary is given in terms 
of quadratures. We shall assume that the flow of fluid is planar, and that there is no 
force of gravity (g =O). Let cp be the arc length of the contour FO, and let us write 
(2.7) in parametric form. We shall write the equation of the line r,, in the form I = .r(cp), 

2 = s (cp) and denote by p (q) the angle of inclination of the line element r0 obtained 
when cp increases. Then x' = cosp,z' = sinp. The equation of the boundary of r0 will now 
take the form 

l2u (cp) - u (q)o) 4 VI ZU = *cd 

[20 (Cp) - 0 (9,) -I- VIZ” = *Cd, c = const 

where the upper and lower sign is chosen for the fluid situated below the surface I?0 relative 
to the z axis, or above it. It can be shown that B (cp) 

dS CC 
-= 

dq 2OeP)--o (cpo) +Y 

Now, having found $ (cp), we obtain the equation of 

m /. 'c 

satisfies the relation 

the boundary 

Here Cl? cz determine the Cartesian coordinate of the reference point N from which the 
arc length 'p is measured, and the constant ~a is the angle of inclination of the tangent 
to r0 at the point N. The constant c is determined from the additional conditions in each 
particular case. 

4. Let us determine the form of the free surface in the gravity field in the case when 
the fluid is in contact with a solid vertical wall x=0 on one side I > 0. We shall 
assume that a negative temperature gradient c?Tlhp < 0 is specified along r. We shall 
count the parameter 'p (arc length of r ) from the wall in the direction of increasing x. 



329 

We shall find the temperature distribution from the formula T - T, = A&(v), and will 
represent, in this case, the surface tension in the form o = a,(1 - = fcp)), where h= 

I e‘4 I f%-’ is the capillary constant. We shall assume everywhere below that the function 

G ((P) is piecewise linear: G(V) = 1 -V (0 < tp G I), G = 0 (4,> f), and here we have also 
assumed that j,,(s)= 0 in (2.7). 

The equation of the boundary layer (2.1) has in the planar case for OQcp,<l, a self- 
similar solution h,,, = cp'hdclt (q)/dq where n = ,&.L and Q, +i) satisfies the boundary 
value problem (2.2) in which the coefficients n +5 and 2n + 1 should be replaced, respect- 
ively, by 2 and 1. The problem for @ 1?) was solved in /2/ by numerical methods. Choosing 
(PO = 0, we find that fa = ho0 IQ4 = 0. We can now write the equation of the free boundary 
(2.71 in the following dimensionless forn: 

5; (1 + so’p)-*~* (I + aeG, (cp)) = EOB + c (4.1) 
B = pgd%,', G, = G(0) - 2G(cp) 

where B is the Bond number and a prime denotes a derivative with respect to 2. 
Let us formulate for Eq.(4.1) the boundary conditions Eo' Pot = tg Bot50 (4 = 0, 

PO is the angle between the tangent to l.' and the x axis at the point of contact 
;hy 

Eq.(4.1) we integrated numerically for various values of X and &. Fig.2 (the solid 
lines) shows the form of the free boundary for B = 1, fJo = --n/3 and various values of 
X. The height of the meniscus h_ = Eo(0) decreases as h increases and reaches a value of 
0.414 at li, = 0,99. We note that h=2fsinr/e@oI when h = 0 (when there is no temperature 
gradient). The equation of the free boundary at h = 0 can be expressed in finite form in 
terms of elementary functions /9/. 

In the special case wben 
the following solution: 

1 flo f<f,l go’ t<i, Eg.(4.1) can be linearized and it has 

&, = (1 + 2ht)Ll*B-'1. [A,K (k-l 1/B (1 + 2hx)) -i- 

A,I, (h-1 $fB (1 + 2hz))l (0 <x < 1) 

f. = A, erp (-x?B (1 + 2%)) (z> f)) 

where K1 @)l 1, 0) are modified Bessel functions. The constants A,,A*, A, can be expressed 
in terms of tgBo* and are not given here because of their complexity. 

Let us determine the form of the free boundary of a fluid poured onto a solid horizontal 
wall and wetting its surface in the half-space 220. The wetting line is x = 0, 2 = 0. 
Let p,, be the wetting angle /9/. The equation of the free boundary is obtained by inte- 
grating (4.1) under the conditions go'(O) = tg&, E,"(cQ)=~. 

In the course of numerical integration* Eq.f4.1) is written in parametric form using the 
arc length as parameter, and the constant C which appears in the expression for the layer 
thickness H = -cBml is determined. Fig.3 shows the dependence of the layer thickness on 
the magnitude of the wetting angle H(flo) for h = 0; 0.333;0.5, with Bona numbers equal 
to 1: 0.666; 0.5 respectively (curves 1, 2 and 3). We note that when Be = conat and h 
is fixed, the thickness H increases as B decreases, while when B =const, the thickness H 
decreases as li. increases (we note that H = 1.17 when h =0.99 and B=l). The dashed 
lines in Fig.2 show the form of the free boundary at H = 1.9 and various vales of h. When 
H is given and B = const , the wetting angle increases as the temperature gradient increases. 

We note that (1.3) does not contain any functions of the boundary layer manifesting 
themselves near the line of contact between the free boundary and the solid wall. Here the 
asymptotic expansions are more complicated than (1.3). The equation of the boundary layer 
in this region is identical with the complete Navier-Stokes equations. The functions of the 
boundary layer contribute towardsthe equation of the free boundary layer only in the higher 
approximations. and are therefore not given here. An asymptotic study of the Wavier-Stokes 
system near the line of contact is given in IlO, 111. 

5.The asymptotic formof the freeboundary is determined, in the axisymmetric case, with 
help of Eq.(2.8). Let us determine the form of the aperture in an infinite layer of fluid 
poured onto a horizontal plane. Let the temperature distribution T - T, = AdG(cp), be 
specified along the surface x‘ where the function G (9) has been defined in the 
previous case and m is the arc length of the surface C in the axial cross-section 
measured from the line of contact between l' and the wall. Choosing as before 'pO =Ot we 
conclude that fo (4 = 0, and we write Eq.(2.8) in dimensionless form 

(5.1) 
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where r (cp), z(q) are the cylindrical coordinates of the surface 1‘. We write the boundary 

conditions in the form r (0) = R, I (0) = 0, r’ (0) = cos PO, z’ (0) = sin PO, where fiO is the 

wetting angle and R is the radius of the wetting line of P and the wall. The constant c 

in (5.11 is not known, and is determined with help of the additional condition 2' (as) == 0. 
The height of the fluid layer is determined from the formula fl ~2 -_cB-', and system (5.1) 
was integrated numerically using the Runge-Kutta method. 

Fig.4 

Fig.S 

Fig.4 shows the dependence of the layer height on the radius of the wetting line at 
B,, = 150". The Curves 1, 2 and 3 were constructed with the values of h = 0; 0.333; 0.5, for 
Bond numbers equal to 1; 0.666; 0.5 respectively. When h and B are fixed, the height H 
increases as R increases and reaches its limit value at R-X). When B and H are fixed, 
the angle PO increases as I increases. 

6. Let us determine the form of a gas bubble adhering to the horizontal solid wall in 
a non-uniformly heated fluid within the gravity field. System (1.1) is solved together with 
the equation of heat conduction Prv .VT = E=AT, 

ok, where Tk is the outer solution and 13~ satisfies the equation of the boundary 
temperature layer. 

We shall assume that a constant temperature gradient VT, = Ae, is specified outside 
the boundary layer. We find that at small Prandtl numbers Pr<f, R. -0. Then the 
dimensionless surface tension will have the form a=lfhz with the accuracy of up to 

0 (E). The form of the free boundary is determined by Eq.(2.8), where we assume that 'pO = 0, 
i.e. we choose the cross-section in the boundary layer on the axis of symmetry. It can be 
shown that fo = 0 in (2.8). 

We note that when cp-+O, (2.8) yields 

z = '/,crp~ + . . .( P = r&p f . . ., au/&p = v@F -I- . * . 

(P is the distance along the axis of symmetry and 'p is the arc length of l'). The solution 
of the equation of the boundary layer can be expanded near the critical point in a series in 
powers of cp, with the coefficients depending on s,?zw = ‘pF,‘(s)i- . . ., where the function 

F, (9 satisfies Eq.(2.1) and n = 1. This implies that fcl = 0 in (2.8). 
Thus the form of free boundary layer z = E,(r) satisfies the equation 

When numerical integration is carried out, Eq.(6.1) is written in parametric form with 
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the arc length used as the parameter. The angle fJ, where Z-B is the wetting angle, the 
constant h, the dimensionless volume of the bubble V = 1, and the Bond number were all 
specified, while the constant c and the radius R of the wetting line were determined. 

When r-0, the solution was expanded in a series in powers of cp /9/ and it coalesced 
with the numerical solution. 

Fig.5 shows the dependence of the radius R of the wetting line on the angle p for B = 0; 
B = 0.1 and B = 1. The curves 1 (B = 1) and 2 (B = 0.1) correspond to the absence of a 
temperature gradient h = 0. When h increases while p and B are fixed, the radius R 
decreases and vanishes for some values of k= h, and c=c*. For example, h, = 0.022; c* 
= 2.182 for B = 0.1; p = JT and h, = 0.234; C* = 2.063 for B = 1; fl = n. Curves 3 and 4 
correspond to h = 0.022; B = 0.1 and h = 0.3; B = 1. The bubble becomes detached from the 
wall when h = h,,c = c*. For h> h, the bubble can also become detached from the wall, and 
will be in a state of equilibrium under the action of gravity and thermocapillary forces, 
while the free surface will have a cusp. Note that the radius R may become zero when &< A,,< 

for example 

(i?=‘O.l). When h > 1 

1, = 0.022 and h, = 0.047 when B = 0.1. Curve 5 corresponds to h = 0.047 
1, the integral curves of the equation may intersect the s axis in the rj s- 

plane for certain values of C. This does not happen when there is no temperature gradient 191. 
Part of the curves has a form typical for the integral curves of the free equilibrium boundary 
(h = 0) for positive overloads (&? > O), and another part for negative overloads /9/. 

When there are no gravitational forces (B =O)R#O for all p, and h>O. The 
bubble adheres to the wall under the action of the thermocapillary forces. Curves 6 and 7 
in Fig.5 correspond to the value h = 0.01 and a = 0.1. When h is fixed, there exists 
a maximum value of the angle of contact f$,,, for example pm = 163” when a = 0.01. Com- 
putations have shown that when p is given, the free surface is stretched along the 2 axis 
as a and c increase. 
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